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Abstract
Some aspects of the theory of the dynamics in liquids are reviewed and
compared with results from computer simulations and experiments. The range
of liquids includes liquefied rare gases, binary mixtures, molten metals and
molten alloys. A few of today’s challenges regarding dynamics in liquids are
listed.

1. Introduction

Our world is a fluid one and everything moves as Herakleitos (παντα ρει) already noticed
around 500 BC. I illustrate this with a few examples. The mere existence of life is based on
fluids; chemical reactions are most efficient in the liquid state; the outer core as well as the
mantle of the earth behave like fluids (although on very different time scales); the giant planets
of the solar system are mainly fluid. Enough reasons to try to understand liquids and, for the
fundamentals, in particular the dynamics on the atomic scale. The task of statistical physics is
to predict macroscopic properties in terms of the microscopic properties of individual atoms
or molecules. Until today the very nature of a liquid with its absence of long-range order as in
a crystal or absence of ideal disorder as in a dilute gas prevented the development of a rigorous
theory. Instead, theories for liquids are extrapolations of e.g. the exact theory for dilute gases
to dense systems or of the well established macroscopic linearized hydrodynamic description
down to the microscopic scale.

For more than 50 years inelastic neutron scattering has been the most suitable experimental
tool to test theories of the microscopic structure and dynamics of condensed matter and of
liquids in particular. This is due to the fact that the kinetic energy of ‘thermalized’ neutrons
(25 meV at room temperature) and the mass are comparable to those of atoms and molecules
in a liquid. This is not the case for photons: for x-rays the wavelength is of the order of
intermolecular distances, but the photon energy is six orders of magnitude higher than the
molecular thermal energies. For visible light the wavelength is three orders of magnitude
larger than intermolecular distances and therefore light scattering is unable to probe molecular
dynamics except in very dilute systems.

1 Dr P Verkerk has unfortunately died as a result of a road accident.
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With the advent of very intense photon sources in the form of third generation electron
synchrotrons it is now possible to achieve an energy resolution �E/E = 10−7 (Burkel 1991).
Therefore, ultra-high resolution inelastic x-ray scattering can now be used to investigate
microscopic dynamics with an energy resolution of 1 meV, which opens entirely new
possibilities. Because of the different properties of neutrons and x-rays, inelastic neutron
scattering and inelastic x-ray scattering form a useful complementary pair.

Our understanding of the dynamics in liquids has also benefited considerably from
molecular dynamics (MD) computer simulations. By solving Newton’s equations of motion for
a limited number of particles interacting through a model potential one calculates on one hand
the same quantities that are measured experimentally and in addition any other microscopic
quantity which is inaccessible for experiment. MD simulations are useful for verifying theories
because they both can use identical models for the interaction potentials. MD simulations also
serve to interpret experimental data.

Section 2 gives examples of theories for liquid dynamics. Section 3 gives results
from recent inelastic scattering experiments with neutrons as well as x-rays, and from MD
simulations.

2. Theory

2.1. Definitions

A useful quantity describing molecular dynamics in condensed matter is Van Hove’s time–
dependent density–density correlation function:

G(�r, t) = 1

ρ
〈ρ(�0, 0)ρ(�r, t)〉 (1)

with 〈· · ·〉 the ensemble average. The instantaneous local particle number density is given by

ρ(�r, t) =
N∑
j=1

δ{�r − �Rj(t)}

with �Rj(t) the position of the j th particle at time t , and the average density is ρ = 〈ρ(�r, t)〉.
The so-called self-part of G(�r, t) is defined by

Gs(�r, t) = 〈ρ1(�0, 0)ρ1(�r, t)〉 (2)

with the one-particle density

ρ1(�r, t) = δ{�r − �R′(t)}
where �R′(t) is the position of a marked particle. Associated with the microscopic number
density we have the particle current:

�j(�r, t) =
N∑
l=1

�vl(t)δ{�r − �rl(t)} �j 1(�r, t) = �v′(t)δ{�r − �R′(t)}

where �vl(t) is the velocity of particle l, and �v′(t) the velocity of a marked particle. The velocity
autocorrelation function is defined as

Z(t) = 1
3 〈�v′(t)�v′(0)〉. (3)

The spatial Fourier transforms of equations (1) and (2) are called the intermediate scattering
functions:

F(�k, t) = 1

N
〈ρ∗

�k ρ�k(t)〉 Fs(�k, t) = 〈ρ1∗
�k ρ1

�k (t)〉 (4)



Dynamics in liquids 7777

where ρ�k(t) and ρ1
�k (t) are plane waves of density fluctuations with wavevector �k:

ρ�k(t) =
N∑
j=1

exp[i�k �Rj(t)] ρ1
�k (t) = exp[i�k �R′(t)].

The associated Fourier components of the particle currents are

�j�k(t) =
N∑
l=1

�vl(t) exp[i�k �Rl(t)] �j 1
�k (t) = �v′(t) exp[i�k �R′(t)]

which can be split in a transverse component jT�k (t) perpendicular to �k and a longitudinal

component jz�k (t) parallel to �k, assuming the system is isotropic. Analogous to the density
correlation functions we define the transverse and the longitudinal current–current correlation
functions:

CT (�k, t) = 1

2N
〈jT ∗

�k (0)jT�k (t)〉 = 1

N
〈jx∗

�k (0)jx�k (t)〉 = 1

N
〈jy∗

�k (0)jy�k (t)〉 (5)

CL(�k, t) = 1

N
〈jz∗

�k (0)j z�k (t)〉. (6)

Fourier transforming equations (4) from t to ω leads to the dynamical structure factors:

S(s)(�k, ω) = 1

2π

∫ ∞

−∞
F(s)(�k, t) exp(iωt) dt. (7)

S(k, ω) can be measured by inelastic neutron as well as x-ray scattering, but Ss(k, ω) can
only be measured by neutrons. For both types of scattering experiment h̄�k is the momentum
transfer and h̄ω the energy transfer. In isotropic media as liquids and gases the scattering
functions depend only on k = |�k|. From the definitions it follows that ρ̇�k(t) = ikjz�k (t) and the
longitudinal current correlation function is related to the density correlation function:

CL(�k, t) = − 1

k2
F̈ (k, t). (8)

The Fourier transform of equation (8) is

C̃L(k, ω) = ω2

k2
S(k, ω). (9)

Expanding the intermediate scattering functions in a Taylor series at t = 0, we get for the
coefficients [

dnF(s)(k, t)

dtn

]
t=0

= (−i)n
∫ ∞

−∞
ωnS(s)(k, ω) dω = (−i)n〈ωn〉(s). (10)

The lowest order frequency moments 〈ωn〉 and 〈ωn〉s have been calculated:

〈ω0〉 = S(k) 〈ω0〉s = 1

〈ω〉 = 〈ω〉s = ωR = h̄k2

2M

〈ω2〉 = 〈ω2〉s = kBT

M
k2 + O(h̄2) (11)

with M the particle mass, T the temperature, kB Boltzmann’s constant and h̄ωR the recoil
energy, the average energy imparted by the scattered photon or neutron to the system. The third
and fourth frequency moments have been calculated for an additive two-particle interaction
potential ϕ(r) (Puff 1965, DeGennes 1959):

〈ω3〉 = ωR{ωR[ωR + 4ωK ] + *2(k)}
〈ω4〉 = 〈ω2〉{3〈ω2〉 + *2(k)} + O(h̄2) (12)
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with h̄ωK the average kinetic energy per particle and

*2(k) = ρ

M

∫
{1 − cos(kz)}d2ϕ(r)

dz2
g(r) d�r (13)

with g(r) the static pair distribution function.
A rigorous property of S(k, ω) is the condition of detailed balance:

S(k,−ω) = exp

(
− h̄ω

kBT

)
S(k, ω). (14)

In classical theories S(k, ω) is an even function of ω, i.e. G(r, t) and F(k, t) are real functions,
and one possibility to relate classical theory to real systems is to approach a symmetrized
version of S(k, ω) by the classical one. For instance

Sclass.(k, ω) = Ssym(k, ω) = 1 − exp(−h̄ω/kBT )

h̄ω/kBT
S(k, ω). (15)

2.2. Solid-like behaviour

2.2.1. Visco-elastic model. As an illustration of how theories for liquids may be developed we
begin with the visco-elastic model, which is relatively simple but has been very successful in
the description of the dynamics in liquids. Frenkel (1946) considered the connection between
viscosity and the rigidity of liquid bodies using Maxwell’s relaxation theory of elasticity
(Maxwell 1867). If a shearing force is applied to a liquid, the stress tensor is proportional to
the velocity gradient:

σαβ = −η

(
∂vα

∂rβ
+
∂vβ

∂rα

)
(16)

with η the shear viscosity, and α, β = x, y or z. However, if the force is applied suddenly, the
liquid behaves like a solid, and the stress is proportional to the strain, i.e. the displacement of
adjacent layers with respect to each other:

σαβ = −G

(
∂uα

∂rβ
+
∂uβ

∂rα

)
(17)

where uα is the displacement with respect to equilibrium and G the rigidity modulus.
Interpolating between equations (16) and (17) it is possible to write

−
(
∂vα

∂rβ
+
∂vβ

∂rα

)
= 1

G

dσαβ

dt
+

1

η
σαβ. (18)

If at t = 0 the motion suddenly stops, i.e. �v = 0, the solution for equation (18) is

σαβ(t) = σαβ(0) exp(−t/τM)

so the stress relaxes with Maxwell’s relaxation time τM = η/G. Substituting

η(t) = G exp(−t/τM) (19)

in equation (16) is equivalent to Maxwell’s visco-elastic approximation. If the shear force
changes rapidly, and the stress has no time to relax, elastic waves will be generated, while at low
frequency the liquid will perform viscous flow. Obviously, visco-elastic effects can occur only
in the transverse component of the current �j�k(t), and therefore the visco-elastic approximation
has consequences for the transverse current correlation function CT (k, t). From the Navier–
Stokes equations, which describe the dynamics in a liquid on a macroscopic scale (k → 0) it
follows that

∂

∂t
CT (k, t) + νk2CT (k, t) = 0 (20)
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with ν = η/(ρM) the kinematic shear viscosity, and the solution to this equation is

CT (k, t) = CT (k, 0) exp(−νk2t).

This result has been generalized (e.g. Ailawadi et al 1971) by introducing a generalized
viscosity or memory function:

∂

∂t
CT (k, t) + k2

∫ t

0
ds ν(k, t − s)CT (k, s) = 0 (21)

and using a k-dependent relaxation time τM(k), i.e. assuming a functional form for the
generalized viscosity as

ν(k, t) = G

ρM
exp[−t/τM(k)].

Laplace transforming equation (21), the solution for the transverse current correlation function
is easily obtained as

ĈT (k, z) = CT (k, t = 0)

−iz + k2ν̂(k, z)
= 〈ω2〉

−iz + k2ν̂(k, z)
(22)

with

ν̂(k, z) = G/(ρM)

z + 1/τM(k)
.

Since the transverse current correlation function is not accessible to experimental
techniques, only computer simulations can test the visco-elastic model. This has been done by
Levesque et al (1973) for a fluid of particles interacting through the Lennard-Jones potential.
Given the simplicity of the visco-elastic model the agreement was very satisfactory. In
particular, the occurrence in the computer simulations of shear waves showing as peaks in
C̃T (k, ω) is predicted by the visco-elastic model.

In view of this success, a similar approximation was proposed (Ailawadi et al 1971) for
the longitudinal currents, starting again from the Navier–Stokes equations:

∂

∂t
CL(k, t) +

∫ t

0
dsK(k, t − s)CL(k, s) = 0 (23)

with

K(k, t) = k2

[
kBT

MS(k)
+ ψ(k, t)

]
(24)

and

ψ̂(k, z) = ψ(k, t = 0)

z + 1/τ(k)
(25)

where the initial value of ψ(k, t) can again be obtained from the thermodynamic and structural
properties of the liquid, and τ(k) is a ‘longitudinal’ relaxation time.

This expression leads, through equation (9), to a model for the dynamic structure factor
that has been widely used in the literature.

2.2.2. Damped harmonic oscillator. This is another model used for liquids and related to
the solid state. It is obtained studying a single nucleus bound in a damped harmonic oscillator
(Crevecoeur et al 1996) and considering only the first excited state. The dynamic structure
factor is

S(k, ω) = A

2π6

h̄ω/kBT

1 − exp(−kBT /h̄ω)

4*262

(ω2 − *2)2 + (2ω6)2
. (26)
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Using equation (15) the symmetrized S(k, ω) can be written as

Ssym(k, ω) = A

2π

{
6 + (ω + ωs) tan ϕ

(ω + ωs)2 + 62
+
6 − (ω − ωs) tan ϕ

(ω − ωs)2 + 62

}
(27)

with ω2
s = *2 − 62, tan ϕ = 6/ωs . The Fourier transform is

F(k, t) = 1

cosϕ
exp(−6|t |) cos(ωs |t | − ϕ) (28)

which oscillates as function of t with frequency ωs , damping coefficient 6 and phase shift
ϕ. This result maybe generalized by making ωs and 6 k dependent, and it has been used to
analyse e.g. data for liquid He (Crevecoeur et al 1996) or phonon-like excitations in classical
liquids like argon (de Schepper et al 1983).

2.3. From hydrodynamics to microscopic dynamics

On a macroscopic scale there are five independent conserved variables, for instance the number
density ρ, momentum density �p = m�v and energy density e. This choice is rather obvious,
but other choices, for instance ρ, the longitudinal velocity v parallel to �k, local temperature,
fluctuations of the longitudinal stress tensor and fluctuations of the longitudinal heat current, are
also possible and their use is sometimes advantageous. For a binary mixture a possible choice
is the relative concentration of one component, the total number density, total momentum
density, temperature, and relative velocity.

In the case of Ss(k, ω) we are only concerned with the one-particle density ρ1(�r, t).
Combination of the conservation law and the constitutive relation, which defines the self-
diffusion coefficient D, leads to

Ss(k, ω) = 1

π

Dk2

ω2 + (Dk2)2
Fs(k, t) = exp(−Dk2|t |). (29)

This is valid for the macroscopic case, i.e. k → 0. From section 2.1 it follows that

Z(t) = − lim
k→0

1

k2

d2

dt2
Fs(k, t) Z̃(ω) = ω2 lim

k→0

Ss(k, ω)

k2
. (30)

In other words, a measurement of Ss(k, ω) in the hydrodynamic regime yields Z̃(ω). In order
to avoid divergence at ω = 0 in determining Z̃(ω) from experimental data it is better to replace
the second equation in (30) by

Z̃(ω) = D

π
lim
k→0

Z(k, ω) Z(k, ω) =
[

1

π

Dk2

ω2 + (Dk2)2

]−1

Ss(k, ω). (31)

The limit k → 0 in the previous equations is not a trivial task from the experimental point of
view, and different limiting procedures can lead sometimes to somewhat different results. The
two most common limiting methods are linear extrapolation and quadratic extrapolation, the
latter being supported by mode-coupling theories (see below).

For S(k, ω) in the hydrodynamic regime, we use number density, momentum density
and temperature as the conserved variables. Using the Navier–Stokes equations, which
introduce the transport coefficients shear viscosity, bulk viscosity and thermal conductivity,
and neglecting all but the first order in the deviations of local density, momentum and energy
(or temperature) from their average values, we get after taking the Fourier–Laplace transform
to (k, z)

H(k, z) · �̃A�k(z) = �A�k(t = 0) (32)
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where �A�k(t) = {ρ�k(t), T�k(t), �j�k(t)}. The 5 × 5 hydrodynamic matrix H(k, z) is given by


−iz 0 ik 0 0
0 −iz + ak2 ifjz,T (k) 0 0

ifρ,jz (k) ifT,jz (k) −iz + bk2 0 0
0 0 0 −iz + νk2 0
0 0 0 0 −iz + νk2


 (33)

with the kinematic shear viscosity ν = η/(ρM), the coefficient b = (4η/3 + ζ )/(ρM), where
ζ is the bulk viscosity, the coefficient a = λ/(ρcV ), where λ is the thermal conductivity
and γ = cP /cV . The real functions fi,j (k) are determined by thermodynamics and from the
elements of Ω in equation (43). The transverse currents jx and jy are completely decoupled
from the other three variables. Therefore, equation (32) splits in a set of three equations for
{ρ̃�k(z), T̃�k(z), j̃

z
�k (z)} and a set of two equations for {j̃ x�k (z), j̃

y

�k (z)}. The density ρ and the
longitudinal current jz are coupled, the same for the temperature T and jz, but ρ and T are
not coupled. Solving for ρ̃�k(z) and using

S(k, ω) = 1

π
Re 〈ρ�k(t = 0)ρ̃�k(z = iω)〉

leads to the well known Rayleigh–Brillouin triplet:

2π
S(k, ω)

S(k)
=

(
γ − 1

γ

)
2DT k

2

ω2 + (DT k2)2
+

1

γ

{
6k2 + (ω + csk)bsk

(ω + csk)2 + (6k2)2
+
6k2 − (ω − csk)bsk

(ω − csk)2 + (6k2)2

}
(34)

with 6 = [a(γ −1)/γ +b]/2 the sound attenuation coefficient, cs the adiabatic sound velocity,
bs = [(γ − 1)a + 6]/cs and DT = a/γ the thermal diffusivity. The second term of the right
hand side is identical to the result for the damped harmonic oscillator. Note that in general
equation (34) has a divergent second frequency moment 〈ω2〉 and therefore does not lead to
the correct short-time behaviour.

Solving equation (32) for j̃ x�k (z) we obtain for the transverse current correlation function

C̃T (k, ω) = Re [ĈT (k, z = iω)]:

ĈT (k, z) = 〈ω2〉
[

− iz + bk2 + c2
s k

2

(
1

−iz
+

γ − 1

−iz + ak2

)]−1

. (35)

In order to extend the hydrodynamic results to larger k and short t , frequency and
wavenumber dependent transport coefficients have been introduced leading to generalized
hydrodynamics. Examples have already been given in section 2.2.1 for the current correlation
functions.

2.4. From dilute gas to liquid

For a gas of non-interacting particles obeying Boltzmann statistics we have

S(k, ω) = Ss(k, ω) = 1

k

√
M

2πkBT
exp

{
− M

2kBT k2

(
ω − h̄k2

2M

)2}
. (36)

Equation (36) is also valid for any density in the limit k → ∞, where the wavelength λ = 2π/k
of the observed Fourier components ρ�k(t) of the density fluctuations is so small that only the
behaviour of the particles on a very short length scale counts and the interactions between the
particles are irrelevant.

A first step towards real liquids is the inclusion of uncorrelated binary collisions and
we arrive at Boltzmann’s kinetic equation. His approximation is valid for a dilute gas.
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The scattering functions are obtained in terms of collision integrals, which can be evaluated
numerically for arbitrary two-particle interaction potentials (Maitland et al 1981).

The Boltzmann equation for hard spheres was modified semi-empirically by Enskog
(Chapman and Cowling 1970), and was revised by van Beijeren and Ernst (1973, 1979). The
same assumptions as in the Boltzmann theory apply (collisions between particles are binary
and successive collisions are uncorrelated), but corrections for the static structure of the liquid
and the finite size of the particles are applied.

As in the case of hydrodynamics we choose the set of variables that are conserved
in the hydrodynamic (macroscopic) limit and which determine S(k, ω) (see e.g. Cohen
and de Schepper 1990): number density, longitudinal current and temperature, adequately
renormalized. Now we use Ã�k(t) = {ρR

�k (t), j
zR

�k (t), T R
�k (t)}. The nine correlation functions

are given by

FR
αβ(k, t) = 〈A∗

�k,α(t = 0)A�k,β(t)〉 = 〈A∗
�k,α eLN t A�k,β〉 (37)

where the dynamic variable without argument denotes its value at t = 0. The renormalization
(superscript R) is such that the initial value of the correlation functions is unity. We have also
introduced an N -particle pseudo-Liouville operator, LN , which describes the time evolution
of any dynamic variable, A�k,β(t) = eLN t A�k,β . Note that F(k, t) = S(k)FR

ρρ(k, t).
An approximate solution is found replacing the N -particle pseudo-Liouville operator by

the Enskog operator LE(�k), which takes only binary collisions into account and is a single-
particle operator. Therefore, equation (37) can be simplified to

FR
αβ(k, t) ≈ 〈A′∗

�k,α etLE(�k) A′
�k,β〉1 (38)

where �A′
�k is the one-particle analogue to �A�k

�A′
�k =

{
1,

√
M

kBT

�k�v
k
,

√
3

2

(
3

2
− Mv2

2kBT

)}

and 〈· · ·〉1 denotes the average over the particle velocity, obtained through the Maxwell velocity
distribution function:

〈· · ·〉1 =
∫

d�v · · ·
(

M

2πkBT

)3/2

exp

[
− Mv2

2kBT

]
.

The inhomogeneous Enskog collision operator consists of three parts

LE(�k) = −i�k�v + ρg(d)C�k + ρA�k. (39)

Here −i�k�v represents the free streaming part (free gas),C�k is the binary collision operator, g(d)
the hard-sphere pair correlation function at contact andA�k the mean field part, that incorporates
through S(k) the effect of a mean field in which each hard sphere moves due to the presence of
the other hard spheres. Fαβ(k, t) is evaluated by determining the eigenvalues zj (k) of LE(k).

In the particular case of the dynamic structure factor the result is

S(k, ω) = S(k)

π
Re 〈[iω − LE(k)]

−1〉1 = S(k)

π
Re

∑
j

Mj (k)

iω − zj (k)
. (40)

In the k → 0 limit three of the terms, usually denoted by j = 0,±1, reproduce the
hydrodynamic expression with the transport coefficients replaced by their Enskog counterparts,
whereas the amplitude Mj(k) of all the other terms go to zero in this limit.

Up to 12 eigenvalues have been calculated. However, it turns out that outside the
hydrodynamic regime, but still klE < 1, S(k, ω) can be represented by three effective extended
hydrodynamic modes, which reduce to the three hydrodynamic modes for small k. We have
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introduced here the Enskog mean free path, lE = l0/g(d), where l0 = 1/(ρπd2
√

2) is the
standard mean free path for hard spheres of diameter d.

For low densityLE(�k) approaches the Boltzmann collision operatorLB(�k) = −i�k�v+ρC�k .
For large k, i.e. klmf � 1, where lmf = l0 for low density, or lmf = lE for arbitrary density, the
operator [iω − Lα(�k)]−1 with α = E or B, can be expanded around the free streaming term
leading to a series of binary collisions (Kamgar-Parsi et al 1987):

S(k, ω) = 2

π

tmf

klmf

[
exp

(
− 4

π
(ω∗)2

)
+
sα11(ω

∗)
klmf

+ O

((
1

klmf

)2)]
(41)

with ω∗ = ωtmf /(klmf ) where again tmf = t0 for low density, or tmf = tE = t0/g(d) for
arbitrary density, with the mean free time between collisions

t0 = 1

4ρd2

√
M

πkBT
.

Equation (41) is a first-order correction to the free gas model (first term) and can be regarded
either as an expansion in 1/k or in the density. The function sα11(ω

∗) does not explicitly depend
on T , ρ or k, only on ω∗. The result for Ss(k, ω) can be obtained from equation (41) replacing
sα11(ω

∗) by the corresponding function sα(ω∗). These two functions for the low-density case
(α = B) have been calculated numerically.

Because the Enskog collision operator takes into account only binary collisions, the so-
called ring collisions are neglected. In such an event a tagged particle collides with another
particle, then propagates through the fluid, colliding with various other particles, and then
recollides with the same particle it met initially. Such effects are particularly important in
self-diffusion.

2.4.1. Binary mixtures. Westerhuijs et al (1992) derived an expression for a binary mixture
of hard spheres using an approach similar to the Enskog theory for a one-component system.
They use five basic variables: number concentration, total number density, total momentum,
temperature and mutual relative velocity of the constituents. The result is as in equation (40)
but the sum involves only five terms. For k outside the hydrodynamic regime one of the
roots zj is real and corresponds to an elastic line, whereas the other four roots are two
pairs of complex conjugate roots, corresponding to two pairs of inelastic lines. The central
one corresponds to correlations in the concentration fluctuations, while the inelastic lines
represent two types of propagating mode. There are therefore two slow and two fast modes
at frequencies ±ωs(k) and ±ωf (k). In the hydrodynamic region the frequency of the fast
mode becomes zero, so that the roots turn real, and thus the structure of the solution is three
real roots and a pair of complex conjugate roots. Four of them reduce to the hydrodynamic
modes, with the transport coefficients replaced by their Enskog analogues, whereas the other
one, which corresponds to the mutual velocity, disappears because it is not a conserved
quantity; this means that the corresponding amplitude in equation (40) goes to zero. Then
we have a sum of four Lorentzians, two elastic ones with a width determined by respectively
the concentration diffusion coefficient and the thermal diffusivity, and two inelastic lines at
frequencies determined by the ‘hydrodynamic’ sound velocity ±csk, with a width determined
by the sound attenuation.

2.5. Memory functions

The time evolution of a variable A(�rN(t), �pN(t)) is formally given by the Liouville equation:

A(t) = exp(iLt)A(0)
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or
dA(t)

dt
= exp(iLt)iLA(0) (42)

where C is the ordinary Liouville operator, N the number of particles and (�rj , �pj ) the
coordinates of particle j in phase space. Of course it is impossible to solve the Liouville
equation exactly in terms of 6N variables. A very useful and generally applied approach is to
choose a set of variables A(t) slowly varying with time. Then an operator E is defined which
projects any variable B(t) on the subspace spanned by A(t = 0):

PB(t) = 〈A∗B(t)〉〈A∗A〉−1A.

Then the right hand side of equation (42) is modified by inserting the identity operator
E + (1 − E) after the operator exp(iLt). It is believed that a good choice of A is the set of
variables that are conserved in hydrodynamics: number of particles, momentum and energy.
On the microscopic scale these variables are not at all conserved, but they will be slowly
varying or quasi-conserved at least for small k.

For the correlation function C(t) = 〈 �A∗(0) �A(t)〉 the procedure described above leads to
the memory function approach (Hansen and McDonald 1986):

dC(t)

dt
= iΩ · C(t) −

∫ t

0
ds M(t − s) · C(s) (43)

where Ω has the dimension of a frequency and its elements depend only on equilibrium
statistical averages. The second term on the right hand side of equation (43) is due to 1 − E.
In fact the memory function M(t) is the autocorrelation function of a generalized random
force �K which is orthogonal to the set of slowly varying variables. Therefore, we expect that
M(t) is decaying considerably faster than C(t), which may allow for simple approximations
leading to useful results for the dynamics of the quasi-conserved variables.

Equation (43) can be solved by the Laplace transform and the solution reads

Ĉ(z) = C(t = 0) · [zI − iΩ + M̂(z)]−1. (44)

2.5.1. Single-particle motion. As an illustration of the projection operator formalism, we
return to the case of single-particle motion and self-diffusion. From the definitions of ρ1

�k (t)
and j 1

�k (t) in section 2.1 it follows that

ρ̇1
�k (t) = −i�k �j 1

�k (t). (45)

We choose to project on the single-particle density at t = 0, meaning that

PB(t) = 〈ρ1∗
�k B(t)〉〈ρ1∗

�k ρ1
�k 〉−1ρ1

�k . (46)

In this particular case Ω vanishes and

Ḟs(k, t) = −
∫ t

0
ds Ms(k, t − s)Fs(k, s). (47)

It turns out that Ms(k, t) = k2D(k, t) and

lim
k→0

D(k, t) = 〈vz(0)vz(t)〉.
Since

D =
∫ ∞

0
dt〈vz(0)vz(t)〉

we obtain that D̂(k → 0, z = 0) = D and

lim
k→0

Fs(k, t) = exp(−Dk2|t |). (48)
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Figure 1. Dynamic structure factor of dense Ne (density 34.62 nm−3). Error bars: experimental
data. Solid line: fit with the three Lorentzian model. The triangles show the frequencies of the
propagating mode.

2.5.2. Mode coupling. The memory function formalism is based on the assumption that the
random force �K(t) is orthogonal to the set of slowly varying variables. This does not mean
that �K is orthogonal to combinations of the form AA or AAA etc. Since these combinations
will have slowly varying features, not all slow parts of �K are projected out. In order to improve
our approximations for the memory function M we may define a new projection operator that
projects any variable onto the subspace spanned by AA. Applying the procedure to single-
particle motion we may choose not only ρ1

�k , but also the current �j�k . This choice is based on
MD simulations by Alder and Wainwright (1970), who observed that a moving particle in a
liquid creates a vortex or backflow in the bath of surrounding particles, which in turn leads to
a slow-down of the decay of the velocity autocorrelation function. The result is

Z(t) = 1

3ρ(2π)3

∫
d�kFs(k, t)

k2
[CL(k, t) + 2CT (k, t)] (49)

which in the hydrodynamic limit turns into

Z(t) = 2kBT

3ρM(2π)3

∫
d�k exp[−(D + ν)k2t]. (50)
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Figure 2. Sound dispersion in liquid argon determined from neutron scattering (dots with error
bars), linearized hydrodynamics (dashed lines) and mode-coupling theory (solid lines) at four
densities (in nm−3): (a) 17.60, (b) 18.51, (c) 20.11, (d) 21.63.

For t → ∞ (which is appropriate in the hydrodynamic limit) this can be written as

Z(t) ≈ 2kBT

3ρM
[4π(D + ν)t]−3/2. (51)

The Fourier transform of Z(t) for small frequencies is then (de Schepper and Ernst 1979):

Z̃(ω) ≈ D −
√

2kBT

12πMρ(D + ν)3/2

√
ω. (52)

Mode-coupling results are also reflected in the small k behaviour of the self-intermediate
scattering function, and correspondingly in Ss(k, ω), as well as in the dispersion relation, which
shows the positions of the peaks of CL(k, ω) as a function of k. For instance (de Schepper and
Ernst 1979):

Fs(k, t) = exp(−Dk2t) − k

k∗ exp(−τ + τδ)W(τδ) (53)

with τ = Dk2t , k∗ = 4πMρD(D + ν)/(kBT ), δ = D/(D + ν) and

W(x) = 1

4
√
π

1√
x

[
1√
x

F(
√
x)(4x2 − 4x + 1) − 2x + 1

]
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Figure 3. Comparison of experimental data for the self-dynamic structure factor of dense hydrogen
gas (density 21.2 nm−3) with the predictions of mode-coupling theory. (a) Initial value. (b) Half
width at half maximum, and (c) their product. The crosses with error bars denote the experimental
data. The lines are the mode-coupling predictions.

with F(y) = √
π i exp(−y2) erf(−iy)/2. This leads to a value ofSs(k, ω = 0) and a half-width

at half maximum ωs
H (k) which behave as

k2Ss(k, 0) = 1

Dπ
(1 + αk)

ωs
H (k)

k2
= D(1 − βk). (54)

Moreover, the behaviour of the function Z(k, ω) for small k is given by

Z(k, ω) = Z̃(ω) + O(k2)

i.e. linear terms in k are absent. Also we have, for the dispersion relation,

ωs(k) = csk + µk5/2 (55)

where the values of α, β and µ are given basically in terms of transport coefficients and
thermodynamic properties. It is observed that in all cases these mode-coupling effects appear
as corrections, for small k, of the corresponding hydrodynamic expressions.
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Figure 4. The function Z(k, ω) of dense hydrogen gas for several values of the frequency. For
each frequency a quadratic extrapolation to k = 0 is shown, although a linear extrapolation could
also be tried (see the next figure). The value obtained for k = 0 is the Fourier transform of the
velocity autocorrelation function.

3. Experimental results and computer simulations

Inelastic neutron scattering and high-resolution inelastic x-ray scattering are the two probes to
investigate the microscopic dynamics in condensed matter. X-rays are scattered by the electrons
of the atoms and the scattered intensity is proportional to Z2r2

e , with Z the atomic number and
re = 2.818 fm the classical electron radius. For example, for H we have Z2r2

e = 7.9 fm2 and
for Pb it is 53 400 fm2. In contrast (except in the case of magnetic scattering) neutrons are
scattered by the atomic nuclei with an intensity proportional to 〈b2〉 with b the scattering length.
For example, for H and Pb we have 〈b2〉 = 653 and 88 fm2 respectively. The neutron has spin
1/2 and as a consequence if the nucleus has a spin the neutron–nucleus interaction depends
on the orientation of the neutron spin with respect to the nuclear spin. For example, when a
neutron is scattered by a proton we have b+ = +10.9 fm for parallel spins and b− = −47.5 fm
for anti-parallel spins. If the nuclei of a monatomic system have randomly distributed spin
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Figure 5. Fourier transform of the velocity autocorrelation function for dense hydrogen gas
compared with mode-coupling predictions (full line). Dots with error bars are the results from
the quadratic extrapolation shown in the previous figure. Error bars without symbols denote the
results of a linear extrapolation of the same data. Note that they also fit to a straight line (dashed line),
which is the mode-coupling behaviour, but the slope is too large compared to the mode-coupling
result.

orientations, the scattered intensity will in general have a coherent and an incoherent component
proportional respectively to 〈b〉2 and to 〈b2〉−〈b〉2; for H respectively 14 and 639 fm. Different
isotopes of one element generally have different scattering lengths, which also leads to coherent
and incoherent scattering in the case of spatial random distribution.

Coherent scattering is proportional to S(k, ω), while incoherent scattering is proportional
to Ss(k, ω). This is a complication in the case of neutrons unless one of the two components is
dominant, as in the case of a single isotope without nuclear spin (e.g. 36Ar, a purely coherent
scatterer) or e.g. in the case of H (mainly incoherent scattering). The latter case demonstrates
one of the advantages of neutrons, because it is impossible to measure Ss(k, ω) with x-rays.

Various methods are available to measure S(k, ω) as well as Ss(k, ω) of one element:
(a) using polarized neutron beams and the fact that the neutron spin flips in incoherent scattering,
(b) neutron scattering using two samples of different isotopic composition or (c) combining
neutrons and x-rays.

3.1. Simple fluids

The first experimental observation of collective modes propagating in a fluid with wavelength
comparable to the interparticle distance was in a neutron scattering experiment on liquid Rb
(mainly coherent) by Copley and Rowe (1974). They observed clear inelastic peaks in S(k, ω)

for 3 < k < 10 nm−1. The dispersion curve for the position appeared as a continuation of the
sound dispersion. The results agreed very well with MD simulations by Rahman (1974a, b).

Inspired by this result, de Schepper et al (1983) fitted equation (40) with j = −1, 0,+1,
i.e. the expression for extended hydrodynamics, to neutron scattering data at 4 < k < 38 nm−1

for liquid 36Ar. Although no inelastic peaks were visible, the experimental data could be very
well described even up to k = 38 nm−1 by the extended hydrodynamic modes. Similar results
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Figure 6. Comparison of experimental data for liquid Na with mode-coupling behaviour. Top
panel: normalized half width at half maximum of Ss(k, ω). Central panel: normalized initial value
of Ss(k, ω). Bottom panel: Fourier transform of the velocity autocorrelation function, obtained
through linear extrapolation to k = 0 of Z(k, ω) data.

were found for liquid Ne (mainly coherent) by van Well and de Graaf (1985) (figure 1). At the
lower limit of the k-range it was not possible to verify that the extended modes are indeed a
continuation of the real hydrodynamic modes. However, within the experimental range of k,
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Figure 7. Total dynamic structure factor (weighted sum of S(k, ω) and Ss(k, ω) according to
the corresponding coherent and incoherent cross sections) measured for different incident neutron
energies: full circles, E0 = 20.5 meV; open circles, E0 = 524.8 meV. Note that the resolution
function is much broader for the higher incident energy (see the next figure). Lines are fits to
the data using a three Lorentzian model for S(k, ω) and the arrows show the frequencies of the
propagating modes for each set of data.

the presence of mode-coupling effects could be demonstrated unambiguously, not only in the
dispersion relation of liquid argon (figure 2), but also in Ss(k, ω) for high-density hydrogen
gas (Verkerk et al 1985) (figure 3) and for the velocity autocorrelation function in hydrogen
(Verkerk 1990) (figures 4 and 5) as well as liquid Na (Morkel et al 1987) (figure 6).
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Figure 8. Kinematically allowed (k,�E) region for neutrons of different incident energies. The
lines for 4.4 and 63.8 degrees (scattering angle) are for neutrons with E0 = 20.5 meV. The dash–
dotted vertical line is the half width at half maximum (HWHM) of the resolution function. The
slanted straight lines show the expected position of the side peaks in S(k, ω) for liquid Li as obtained
from the hydrodynamic speed of sound, which clearly falls outside the allowed range for these k

values. The lines for 0.9 and 3.9 degrees correspond to incident energy 524.8 meV, whereas the
dashed vertical lines show the HWHM of the corresponding resolution function.

In the investigation of liquid Li (figure 7) with its high sound velocity (4500 m s−1),
the kinematic limitations of inelastic neutron scattering became very apparent (de Jong et al
1993). This is due to the relation for conservation of momentum and energy of the neutron in
a scattering experiment:

k2 = k2
0 + k2

1 − 2k0k1 cosϕ

�E = h̄2(k2
1 − k2

0)/(2m) (56)

leading to

k∗2 = 2 − �E∗ − 2
√

1 − �E∗ cosϕ (57)

with h̄k the momentum transfer, k0 and k1 the wavevectors of the incident and scattered
neutron, k∗ = k/k0, ϕ the scattering angle, �E = h̄ω the energy transfer, �E∗ = �E/E0,
with E0 being the energy of the incident neutron, and m the neutron mass. Obviously, only
a restricted area of (k, ω) space is accessible in a neutron scattering experiment, where ϕ is
constant. Note also that for the energy loss side, there is a maximum value of �E when the
neutron loses all of its incident energy. In the case of photons, the energy transfer is given by
h̄ω = �E = h̄c(k1 − k0), with c the speed of light. Because c is very large and for x-ray
scattering �E is very small (of the order of meV) as compared to the incident photon energy
(of the order of keV), k1 ≈ k0 to a very good approximation and consequently for inelastic
x-ray scattering we take k = 2k0 sin(ϕ/2), which is now independent of �E (figure 8).

In 1987 the technique of inelastic x-ray scattering was sufficiently advanced (Dorner,
Burkel, Peisl, Sinn; see Burkel 1991, and references therein) to perform the first experiments
on liquid Li investigating propagating modes. The resolution was 26 meV, i.e. 2 × 10−6 of
the incident energy. Today, this technique is further refined and a resolution of 1.5 meV is
possible. Liquid lithium (Scopigno et al 2000) has been recently remeasured and the results
are shown in figure 9.
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Figure 9. Dynamic structure factor of liquid Li near melting, measured by inelastic x-ray scattering,
for several wavevectors. The full line in the right panel is the expected free particle limit.

Neutron scattering experiments were performed at lower k by combining high energy
resolution with small-angle scattering, sometimes called neutron Brillouin scattering, because
in the low-k, hydrodynamic limit, S(k, ω) should approach the Rayleigh–Brillouin triplet,
equation (34). The first data using this technique were obtained at room temperature for dense
N2 gas (mainly coherent) (27 and 51 MPa) by Egelstaff et al (1989) and for dense 36Ar gas
(8 and 20 MPa) by Bafile et al (1990), see figure 10. In both cases extended hydrodynamic
modes were observed which were a smooth continuation of the hydrodynamic modes, with
the transition somewhere between k = 0.5 and 1.0 nm−1. More recently, the experimentally
more difficult case of liquid 36Ar was investigated also with neutron Brillouin scattering by
Mos et al (1997). For k = 0.85 nm−1 the results agreed well with the hydrodynamic model.
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Figure 10. Results of neutron Brillouin scattering on dense Ar. Upper panel, left: results for
density 5.04 nm−3. Dots: experiment. Broken line: linearized hydrodynamics. Full line: fit
with a three Lorentzian model. (a) k = 0.5 nm−1, (b) k = 0.75 nm−1, (c) k = 1.00 nm−1,
(d) k = 1.25 nm−1. Upper panel, right: results for density 2.00 nm−3. Symbols and k values are as
in the left panel. Lower panels: variation of the parameters in the fit with the three Lorentzian model
with k for both densities: full symbols, higher density; open symbols, lower density. Lines show
the hydrodynamics predictions: full line, higher density; dashed line, lower density. (a) Position
of the sound mode, (b) width of the heat mode, (c) width of the sound mode, (d) ratio between the
amplitudes of the sound mode and the heat mode.

The combination of neutron Brillouin scattering and the strongly and coherently scattering
isotope 36Ar made it possible to investigate the dynamics at low density and in the region where
in a hard-sphere system binary uncorrelated collisions would be dominant over higher order
collisions (Verkerk et al 1991) (figure 11). This means that if equation (41) is rewritten as
S(k, ω) = S(0)(k, ω) + ρS(1)(k, ω) + O(ρ2), then the higher order terms should be negligible.
The experiment showed that S(1)(k, ω) for 36Ar is quite different from the hard-sphere one,
which is given in terms of the density-independent and k-independent function sB11(ω

∗) and also
from the function corresponding to a Lennard-Jones fluid (Barocchi et al 1996) although the
differences with this case diminish as k decreases. Therefore this function is a quite sensitive
test of the interatomic potential.
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Figure 11. First order correction of the free particle dynamic structure factor measured for dense
Ar compared with results for several interatomic potentials. Dots: experimental data. Symbols
with error bars: results for a Lennard-Jones fluid. Line: results for hard spheres.

3.2. Binary mixtures

The MD simulation of liquid Li4Pb by Jacucci et al (1984) lead to a strong increase of
interest in liquid binary mixtures with disparate masses, in particular in the phenomenon
of fast sound. The first experimental indications for the existence of fast sound came from
neutron experiments on liquid He–Ne by Montfrooij et al (1989). The results are confirmed
by combined neutron scattering and MD simulation of He–Ar by Crevecoeur et al (1996). MD
simulations of liquid He–Ne by Enciso (1995) showed that the fast and the slow mode both
converge to the hydrodynamic mode with decreasing k. This picture differs from the kinetic
model calculations of Westerhuijs et al (1992).

The same problem as with inelastic neutron scattering on liquid Li turned up in experiments
on liquid Li4Pb (de Jong et al 1994, Alvarez et al 1998). However, because of the extremely
large scattering cross section of Pb for x-rays, inelastic x-ray experiments would be extremely
hard or even impossible. In both neutron experiments the existence of a high-frequency mode
was confirmed (figures 12 and 13). New MD simulations of liquid Li4Pb by Fernandez-
Perea et al (1998) (figure 14) support the conclusions from the more recent neutron scattering
experiment that the high-frequency mode is supported by the Li atoms only, but that the
character is rather different from the sound mode in pure Li: it is more or less localized
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Figure 12. Inelastic neutron scattering spectra of liquid Li4Pb at several wavevectors. Symbols are
experimental data, and lines are fits to the full data (solid line) and the corresponding quasielastic
(dashed line) and inelastic (dash–dotted line) components.

and shows features of optical modes. Recently, the existence of optical transverse modes in
liquid Li4Pb has been predicted by Bryk and Mryglod (2000), while in a He–Ar mixture the
high-frequency modes are kinetic, which means they disappear in the hydrodynamic limit
(Crevecoeur et al 1996).

4. Summary

Our knowledge of fundamental dynamical properties of liquids has considerably increased over
the last decades thanks to the close collaboration of theory, computer simulation and neutron
scattering and in the last decade also inelastic x-ray scattering. This is of great importance
for understanding macroscopic phenomena in simple and complicated liquids and for the
improvement of technological processes.
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Figure 13. The upper panel (a) shows the Q dependence of the integrated intensities of the
quasielastic Zq (triangles) and inelastic Iq (full circles) components of the spectra, while open
circles denote the static structure factor, scaled to Zq . The central panel (b) shows the positions of
the inelastic peaks (circles with error bars) together with the expected positions for hydrodynamic
sound of Li4Pb (dashed line) and pure Li (solid line). The lower panel (c) shows the full width of
the inelastic peaks, while the dashed line is an estimate of the hydrodynamic damping law.

Theoretical approaches summarized in this paper are short-time expansion, the free gas
model, the visco-elastic model, the damped harmonic oscillator, (generalized) hydrodynamics,
the Boltzmann theory for low density, the Enskog theory for hard spheres and mode coupling
theory.

The development of high-resolution inelastic x-ray scattering opens new possibilities, in
particular in combination with neutron scattering.

4.1. Challenges

Neutron Brillouin scattering and inelastic x-ray scattering may help us to understand more about
the transition from the microscopic (kinetic) regime to macroscopic hydrodynamics. Neutron
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Figure 14. Left panels: calculated Li–Li partial dynamic structure factor in the Li4Pb liquid alloy.
Right panel: calculated dynamic structure factor of pure liquid Li.

Brillouin scattering is the unique tool to further investigate deviations from the regime where
binary collisions are dominant. It might turn out to be imperative to combine neutrons and
x-rays for investigating processes like nucleation and chemical reactions, or complex systems,
even biological systems. Other challenges are liquids under extreme conditions, for instance
to understand the physics of the interior of the earth and other planets (the interior of Jupiter
and Saturn contains metallic fluid hydrogen).

To date the number of new applications of the intense radiation available at the latest
generation of electron synchrotrons seems to expand continuously. It is believed that the
advent of future neutron sources like SNS in the USA or the European Spallation Source will
lead to a similar situation for neutrons. In any case it will be necessary to use the synergy of
x-rays combined with neutrons to meet challenges like the ones mentioned above.
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